Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ze-Ping Cui, Jian-Chao Liu and Hong-Wu He*

Key Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
he1208@pubic.wh.hb.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.159$
Data-to-parameter ratio $=16.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

8-Butylamino-1,2,5-trimethyl-7-p-tolyl-3-thia-4,7,9-triazacyclopenta[a]naphthalen-6(7H)-one

In the title compound, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{OS}$, the fused tricyclic system is essentially planar. The crystal stacking is mainly due to $\pi-\pi$ interactions and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions.

Comment

Among many known heterocyclic compounds, derivatives containing the pyridine system have received much attention since they have been demonstrated to possess significant biological activity (Augusto et al., 1995). The title compound, (I), belongs to this family of heterocyclic compounds and we present its crystal structure here.

Received 30 August 2005 Accepted 30 September 2005 Online 12 October 2005

In (I) (Fig. 1), the $\mathrm{C}-\mathrm{S}$ bond lengths [1.733 (2) and 1.741 (2) \AA] are greater than those observed in free thiophene [1.714 (3) Å; Bonham \& Momany, 1963] and thieno[2,3c]pyridine [1.728 (1) and 1.731 (1) £; Nerenz et al., 1997]. Selected bond lengths and angles are listed in Table 1. The $\mathrm{C} 3-\mathrm{S} 1-\mathrm{C} 6$ angle of $91.43(10)^{\circ}$ in (I) is slightly less than that observed in free thiophene [92.2 (2) ${ }^{\circ}$. As expected for a non-

Figure 1
View of (I), showing the labelling scheme for the non-H atoms and 50% probability displacement ellipsoids.

Figure 2
The crystal structure of (I), showing the formation of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines).
protonated ring system, the $\mathrm{C} 12-\mathrm{N} 2-\mathrm{C} 10$ angle of $118.22(18)^{\circ}$ is smaller than 120° (Ghosh \& Simonsen, 1993). The torsion angles $\mathrm{S} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$ and $\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9-\mathrm{C} 7$ are $-178.57(15)$ and $-176.09(19)^{\circ}$, respectively, showing the essential planarity of the fused tricyclic system. There are some weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions (Table 2).

The short intermolecular distances between the centroids of the thiophene $(C g 1)$ and pyridine $(C g 2)$ rings $\left[C g 1 \cdots C g 2^{i}=\right.$ 3.691 (1) \AA and $C g 2 \cdots C g 2^{i}=3.843$ (1) \AA; symmetry code: (i) $\left.\frac{1}{2}-x, \frac{3}{2}-y,-z\right]$ indicate the existence of $\pi-\pi$ stacking interactions (Janiak, 2000), which stabilize the crystal packing (Fig. 2) together with the hydrogen-bonding interactions.

Experimental

2,3,6-Trimethyl-4-amino-5-ethoxycarbonylthieno[2,3-b]pyridine, (II), was prepared according to a literature procedure in 63% yield (Augusto et al., 1995). The iminophosphorane of (II) was synthesized according to a literature report in 93% yield (Wamhoff et al., 1993). To a solution of the iminophosphorane of (II) (1 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ containing a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.05 \mathrm{mmol})$ was added 4-methylphenyl isocyanate (1.1 mmol) under an N_{2} atmosphere at room temperature (Ding et al., 1999). After the reaction mixture was allowed to stand for $5-12 \mathrm{~h}$, the solvent was removed under reduced pressure and $\mathrm{Et}_{2} \mathrm{O}$ and petroleum ether were added to precipitate the side product triphenylphosphine oxide which was then removed by filtration. Subsequent removal of the solvent gave the corresponding carbodiimide, which was used directly without further purification. To a solution of the carbodiimide prepared above in ethanol (15 ml) was added n-butylamine (1.1 mmol) and a catalytic amount of sodium ethoxide in ethanol (Wang et al., 2004). After the mixture had been stirred for 14 h at

Figure 3
Part of the crystal structure of (I), showing the $\pi-\pi$ stacking interactions.

303 K , the solution was concentrated and the residue was recrystallized from $\mathrm{CH}_{3} \mathrm{CN}$ to give colorless prisms of the title compound, (I), after one week.

Crystal data

$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{OS}$
$M_{r}=406.54$
Monoclinic, $C 2 / c$
$a=21.5659(19) \AA$
$b=9.0711(8) \AA$
$c=22.646(2) \AA$
$\beta=109.746(2)^{\circ}$
$V=4169.7(6) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& D_{x}=1.295 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2860 \\
& \quad \text { reflections } \\
& \theta=2.3-25.9^{\circ} \\
& \mu=0.18 \mathrm{~mm}^{-1} \\
& T=292(2) \mathrm{K} \\
& \text { Prism, colorless } \\
& 0.30 \times 0.20 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)
$T_{\text {min }}=0.949, T_{\text {max }}=0.965$
11954 measured reflections

> 4535 independent reflections
> 3493 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.031$
> $\theta_{\max }=27.0^{\circ}$
> $h=-27 \rightarrow 25$
> $k=-11 \rightarrow 11$
> $l=-28 \rightarrow 26$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0773 P)^{2}\right.} \\
&+3.0234 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.55 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.159$
$S=1.05$
4535 reflections
271 parameters

H-atom parameters constrained

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{S} 1$	$1.741(2)$	$\mathrm{C} 6-\mathrm{S} 1$	$1.733(2)$
$\mathrm{C} 12-\mathrm{N} 2-\mathrm{C} 10$	$118.22(18)$	$\mathrm{C} 6-\mathrm{S} 1-\mathrm{C} 3$	$91.43(10)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{S} 1$	$-178.57(15)$	$\mathrm{C} 7-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$	$-176.08(19)$

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {i }}$	$0.89(1)$	$2.22(2)$	$2.948(2)$	$139(2)$
$\mathrm{C} 13-\mathrm{H} 13 B \cdots \mathrm{~N} 2$	0.97	2.40	$2.814(3)$	106

Symmetry code: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.
All C-bound H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}$ distances of $0.96,0.93$ and $0.97 \AA$, respectively, for methyl, methylene

organic papers

and aromatic H atoms. The H atoms were allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The N bound atom H 4 was located in a difference Fourier map and refined with the $\mathrm{N}-\mathrm{H}$ distance restrained to $0.89(1) \AA$, with $U_{\text {iso }}(\mathrm{H})=$ $0.05 \AA^{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support of this work by the National Basic Research Program of China (No. 2003CB114400) and the National Natural Science Foundation of China (No. 20372023).

References

Augusto, C. Y., Rosella, C. \& Carlo, F. M. (1995). Tetrahedron, 51, 1227712284.

Bonham, R. A. \& Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477,
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART (Version 5.059), SAINT (Version 6.01) and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, M. W., Xu, Z. F. \& Wang, T. J. (1999). Synth. Commun. 29, 11711176.

Ghosh, R. \& Simonsen, S. H. (1993). Acta Cryst. C49, 1031-1032.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Nerenz, H., Grahn, W. \& Jones, P. G. (1997). Acta Cryst. C53, 787-789.
Sheldrick, G. M.(1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wamhoff, H., Herrmann, S. \& Stölben, S. (1993). Tetrahedron, 49, 581-583.
Wang, H. Q., Liu, Z. J., Yang, L. M. \& Ding, M. W. (2004). J. Heterocycl. Chem. 41, 393-397.

